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OVERSHOOTING AND THE m-BARRIER
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ABSTRACT

Using general arguments and without numerical calculations, we present three complementary “proofs” that
the extent of overshooting (OV) outside a convective region is decreased by a gradient of the mean molecular
weight.

Subject headings: convection — stars: evolution — stars: interiors — Sun: evolution — Sun: interior —
turbulence

As discussed in an earlier work (Canuto 1997, where relevant
references to recent work can be found), we still do not have
a theoretical prediction that matches the observational sugges-
tions that both for the Sun (below the convective zone) and
for massive stars the “extent of overshooting” (OV) is a small
fraction of the local pressure scale height. In massive stars,
there is a further consideration: the mean molecular weight m
is an effective barrier to the fluid elements that overshoot into
the radiative region. Thus, two barriers actually exist: stable
stratification and a m-gradient (e.g., Ledoux 1947; Schwarzsch-
ild & Harm 1958; Kato 1966; Stothers 1970; Langer, Sugimoto,
& Fricke 1983; Umezu 1998). Since overshooting is a dynam-
ical consequence of Newton’s law and as such is unavoidable,
we formulate the problem as follows: given an OV (which
cannot be zero) computed as if the medium were homogeneous
( ), what is the effect of a m-gradient?∇ 5 0,∇ {  ln m/ ln Pm m

In this Letter we prove the following result:

OV(∇ ) ! OV(∇ 5 0). (1)m m

Of the dynamic equations necessary to describe nonlocal con-
vection (Canuto 1997; Canuto & Dubovikov 1998), we employ
only the one for the turbulent kinetic energy K:

K
1 D (K) 5 gaJ 2 e. (2)f

t

Here, g is the local gravity, a is the thermal expansion coef-
ficient ({ , J is the convective flux FC in units of212r r/T )
cPr, (cP and r are the specific heat andF 5 c rJ 5 c ArwvSC P P

density), v and w are the fluctuating components of the tem-
perature and velocity (in the z-direction), and e is the rate of
dissipation of K. The key ingredient for the description of
overshooting is nonlocality, which in equation (2) is repre-
sented by Df(K), the divergence of the flux of turbulent kinetic
energy Fke,


D (K) 5 F , F 5 wK . (3)G Hf ke ke

z

Equations (2) and (3) are exact since no approximation (clo-
sure) is necessary for their derivation (except of course the
Boussinesq approximation, which is well satisfied when

1 NASA, Goddard Institute for Space Studies, 2880 Broadway, New York,
NY, 10025.

2 Department of Applied Physics, Columbia University, New York, NY,
10027.

). The local, stationary limit of equation (2) yieldsOV K HP

the MLT (mixing length theory): the right-hand side of equation
(2) vanishes, implying that production equals dissipation. Since
by Kolmogorov law, (L is the “size” of the largest3/2 21e 5 K L
eddy), , which is the MLT expression.3/2J ∼ K

How does equation (2) change in the presence of a m-gra-
dient? One can study the problem using the exact equations
for the temperature, velocity and arbitrary concentration field
C (Canuto 1998). Here, we follow a more physical procedure.
Consider the thermal expansion coefficient a that enters equa-
tion (2). It originates from the expansion of the density r 5

, where′ArS 1 r

′r
5 2av. (4)

r

In the presence of an additional scalar field like a concentration,
one has instead

′r  ln r′′5 2av 1 a c , a 5 , (5)C C ( )r C P,T

where C is the mean concentration and c0 is the fluctuating
part of the C field. Much as v combines with the velocity w
to give rise to J in equation (2), the new term c0 does likewise
and equation (2) becomes

K
1 D (K) 5 gaJ 2 ga W 2 e, (6)f C

t

where the “concentration flux” W is defined as (HP is the pres-
sure scale height)

C′′ 21 21W 5 c w 5 2K 5 a H K ∇ . (7)C C P C m
z

Here, KC is the “turbulent diffusion coefficient,” which only a
full model of turbulence can provide (Canuto 1998) but whose
specific form is not needed for our argument. Substituting equa-
tion (7) into equation (6), we obtain the desired equation for
K:

K
211 D (K) 5 gaJ 2 (e 1 gK H ∇ ). (8)f C P m

t

The physical interpretation is quite clear: increases the dis-∇m
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sipation rate e, thus it increases the sink and lowers K. With
less available kinetic energy, one has a smaller overshooting.
This result alone, which is model independent, proves our basic
relation (eq. [1]). However, we can present the result in a more
transparent form. Let us combine equation (6) with flux con-
servation law, (the source of the total fluxF 1 F 1 F 5 Fr C ke N

is denoted by N, nuclear), where Fr is the radiative flux whose
form need not be specified here. Eliminating 21J 5 F (c r)C P

between equation (8) and the latter relation, the stationary limit
of equation (8) becomes a first-order differential equation in
Fke that can be integrated. Calling r1,2 the beginning and end
points of the entire convective zone (including overshooting)
and r

*
(with ) the point where the convective fluxr ! r ! r1 ∗ 2

FC goes from positive to negative, signaling the beginning of
the OV proper, and introducing the luminosities ,2L 5 4pr F
one derives

r r∗ 2

g g
22 22T FL 2 L Fdr 5 T FL 2 L FdrE N r E N rc cP P

r r1 ∗

r2

21 214p T r re dr. (9)E eff

r1

Here, the “effective dissipation” eeff is given by

21 21e r e 5 e(1 1 gK H e ∇ ) { Qe 1 e. (10)eff C P m

With , equation (9) becomes the relation first introducede 5 0
by Roxburgh (1978). However, e cannot be zero. General phys-
ical arguments and recent work by Rosvick & VandenBerg
(1998) show the importance of e in stellar structure calculations.
Since the second integral in the right-hand side of equation (9)
is increased by the presence of in eeff, the OV extent∇ r 2m 2

, specifically, the integral from r
*

to r2 need not be large inr∗
order to compensate the left-hand side. Thus, decreases the∇m

extent of the OV. This is a second way of proving the physical
content of equation (1). Finally, and even more explicitly, we
employ a relation for the decay of the velocity w in the OV,
due to Unno, Kondo, & Xiong (1985):

xln(P/P )∗w(r) 5 w(r )e , P ! P , (11)∗ ∗

where r is an arbitrary point in the OV region, . Ther ! r ! r∗ 2

key parameter is x, which can only be provided by a turbulence
model. If we consider a polytrope of index m, , then2mP ∼ r

xmr∗w(r) 5 w(r ) . (12)( )∗ r

Since by construction , if we take , weOV 5 r 2 r K r r 5 r2 ∗ 2 2

have

xm

OV OV
w(r ) 5 w(r ) 1 2 ≈ w(r ) 1 2 xm . (13)2 ∗ ∗( ) ( )r r2 2

Since , the extent of the and sincew(r ) 5 0 OV 5 r /xm2 2

, we finally derive21H 5 r mP 2

OV 1
5 . (14)

H xP

From the work of Unno et al., one can deduce that under the
scaling , the variable x scales likee r Qe

x r Qx, (15)

and thus in the presence of a , the decay law (14) changes∇m

to

OV 1 1
5 , (16)

H x QP

and thus, finally,

OV(∇ ) 1m 5 ! 1, (17)
OV(∇ 5 0) Qm

which is the desired result: the m-barrier increases the rate of
dissipation of available turbulent kinetic energy and leads to
a decrease of the extent of the OV. Of course, without the
solution of the pertinent equations one cannot evaluate Q but
that was not the purpose of this Letter. To compute both e and
KC one needs to solve the complete dynamical problem. An
attempt in that direction has recently been formulated (Canuto
1998).

I would like to thank R. Stothers for useful discussions on
this topic.
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